Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Braz. j. med. biol. res ; 48(9): 843-851, Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-756410

ABSTRACT

A bovine herpesvirus 1 (BoHV-1) defective in glycoprotein E (gE) was constructed from a Brazilian genital BoHV-1 isolate, by replacing the full gE coding region with the green fluorescent protein (GFP) gene for selection. Upon co-transfection of MDBK cells with genomic viral DNA plus the GFP-bearing gE-deletion plasmid, three fluorescent recombinant clones were obtained out of approximately 5000 viral plaques. Deletion of the gE gene and the presence of the GFP marker in the genome of recombinant viruses were confirmed by PCR. Despite forming smaller plaques, the BoHV-1△gE recombinants replicated in MDBK cells with similar kinetics and to similar titers to that of the parental virus (SV56/90), demonstrating that the gE deletion had no deleterious effects on replication efficacy in vitro. Thirteen calves inoculated intramuscularly with BoHV-1△gE developed virus neutralizing antibodies at day 42 post-infection (titers from 2 to 16), demonstrating the ability of the recombinant to replicate and to induce a serological response in vivo. Furthermore, the serological response induced by recombinant BoHV-1△gE could be differentiated from that induced by wild-type BoHV-1 by the use of an anti-gE antibody ELISA kit. Taken together, these results indicated the potential application of recombinant BoHV-1 △gE in vaccine formulations to prevent the losses caused by BoHV-1 infections while allowing for differentiation of vaccinated from naturally infected animals.


Subject(s)
Animals , Cattle , Gene Deletion , Herpesvirus 1, Bovine/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Viral Vaccines/immunology , Electrophoresis, Polyacrylamide Gel , Herpesviridae Infections/prevention & control , Herpesviridae Infections/veterinary , Herpesvirus 1, Bovine/chemistry , Herpesvirus 1, Bovine/genetics , Immunoblotting , Polymerase Chain Reaction , Recombination, Genetic/genetics , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Viral Vaccines/genetics
2.
Journal of Veterinary Science ; : 161-163, 2010.
Article in English | WPRIM | ID: wpr-221266

ABSTRACT

In order to control the H9N2 subtype low pathogenic avian influenza (LPAI), an inactivated vaccine has been used in Korea since 2007. The Korean veterinary authority permitted the use of a single H9N2 LPAI vaccine strain to simplify the evolution of the circulating virus due to the immune pressure caused by the vaccine use. It is therefore important to determine the suitability of the vaccine strain in the final inactivated oil emulsion LPAI vaccine. In this study, we applied molecular rather than biological methods to verify the suitability of the vaccine strain used in commercial vaccines and successfully identified the strain by comparing the nucleotide sequences of the hemagglutinin and neuraminidase genes with that of the permitted Korean LPAI vaccine strain. It is thought that the method used in this study might be successfully applied to other viral genes of the LPAI vaccine strain and perhaps to other veterinary oil emulsion vaccines.


Subject(s)
Animals , Base Sequence , Birds , DNA, Viral/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A Virus, H9N2 Subtype/genetics , Influenza Vaccines/genetics , Influenza in Birds/immunology , Molecular Sequence Data , Neuraminidase/chemistry , Polymerase Chain Reaction/veterinary , Republic of Korea , Sequence Alignment , Vaccines, Inactivated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL